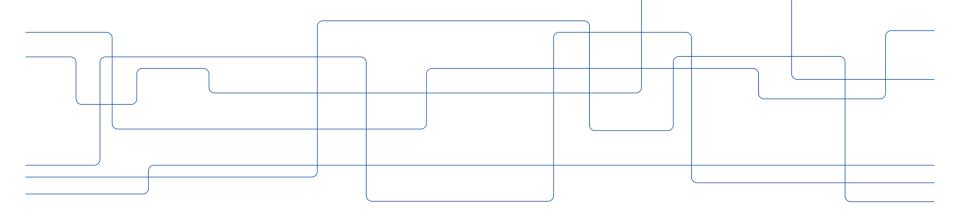


Hybrid control for next generation of heating and cooling networks

Qian Wang

Department of Civil and Architectural Engineering KTH Royal Institute of Technology



Our Team

Yangzhe Chen

PhD student

Théo Parédès

Research engineer

Mustapha Habib

Postdoc researcher

Thomas Ohlson Timoudas

Researcher

Image: Imag

2023-12-05

TERMO

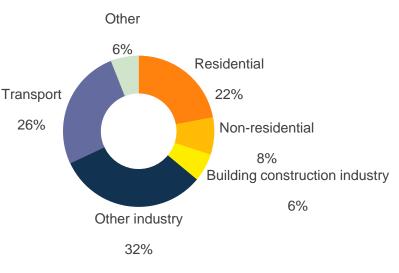
European Union

European Commission

Background

(EU FitFor 55 packages)

- District heating/cooling transition towards 4th-6th generation;
- EPBD recast, "smart readiness" for buildings;
- The increasing needs of integrating renewables in combination with storage toward releasing the power grid pressure;
- Traditional control methods face challenges when energy networks energy consumption and by end use, Worldwide become increasingly complex and coupled.



Data-driven

approach

co-developed

with

stakeholders

General (not case-by-case) thermal-electric load prediction Understand Accurately understand/predict load flexibility Load Technical and semantic interoperability Integrate distributed energy sources with existing district heating (TES, RES...) Advanced Control Smart control strategy Virtual-to-Physical Digital A representational model with bi-directional flow Twin

Selected pilot

Figure: District Heating network real-time data monitoring

SONNEPLATZ

Location: Großschönau, Austria LiL Type: Biomass-based local heating networks with RES integrated

Figure: The testbed in Sonneplatz, Austria

KTH VETENSKAP

Ohlson Timoudas, T., Ding, Y., & Wang, Q. (2022). A novel machine learning approach to predict short- term energy load for future low-temperature district heating. CLIMA 2022 Conference. https://doi.org/10.34641/clima.2022.319

Load flexibility using machine learning (I)

Artificial Neural Network (ANN)

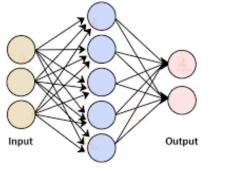


Figure: ANN architecture

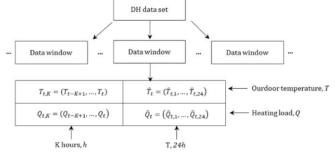


Figure: The logic of short-term prediction model

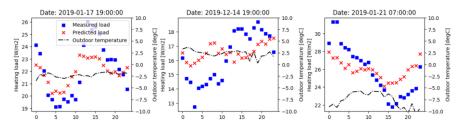


Figure: Predicted heating load for the 24-hour period

Load flexibility using machine learning (II)

ANN + Clustering: deal with varying quality of measurements

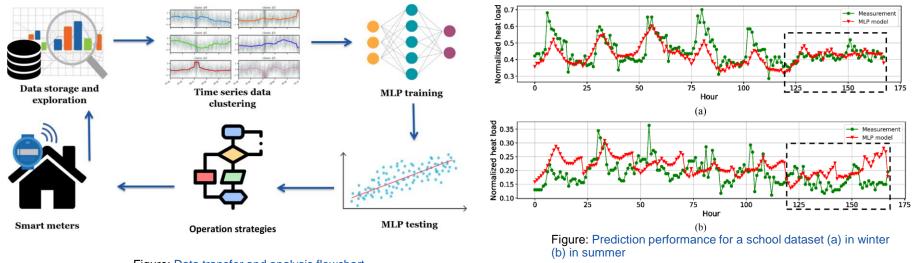


Figure: Data transfer and analysis flowchart

Mustapha Habib, Thomas Ohlson Timoudas, Yiyu Ding, Natasa Nord, Shuqin Chen, and Qian Wang. A hybrid machine learning approach for the load prediction in the sustainable transition of district heating networks. Sustainable Cities and Society, page 104892, 2023. ISSN 2210-6707. doi: https://doi.org/10.1016/j.scs.2023.104892.

Load flexibility using machine learning (III)

(Work in progress)

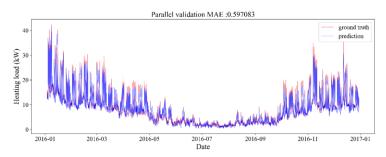
Expand the training dataset: enable model with more generalization

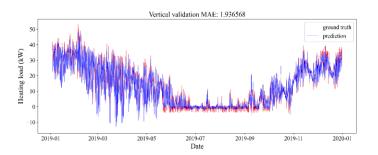
2 Validations

<u>Parallel validation</u>: if the model is robust enough to predict the load for the same building but different years.

<u>Vertical validation</u>: if the model is generalized enough when predicting load of untrained buildings.

Load flexibility using machine learning(III)





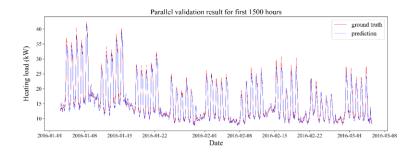


Figure: Prediction results on a school building

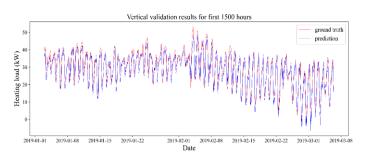
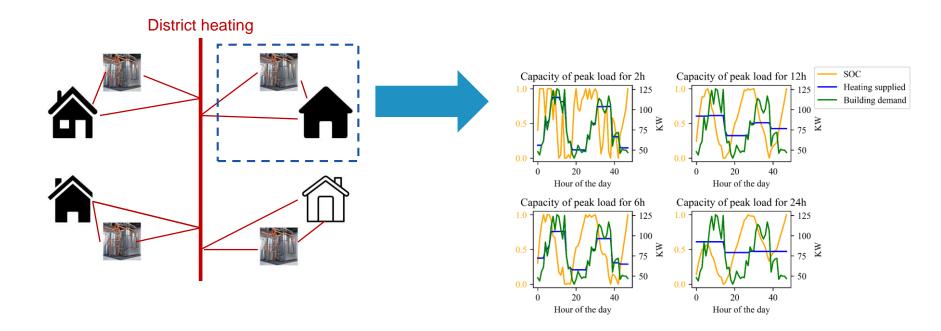


Figure: Prediction results on a office building

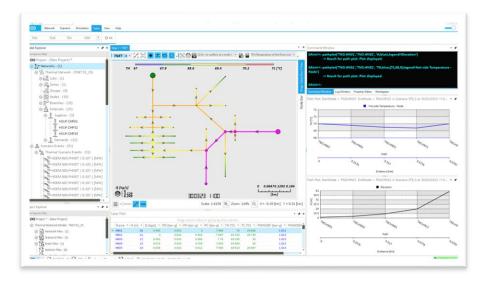
Example results: rather good agreements are reached so far of the developed ML models

VETENSKAP OCH KONST

Flexibility analysis (individual building)

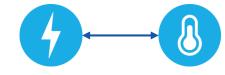


Coupled network optimization and co-simulation (Aggregated)



Thermal network simulation

- Steady state thermal network simulation
- Quasi-dynamic Thermal Network
 Simulation
- Coupled electricity & thermal network simulation (integrate HP with storage)



Electricity Networks

Thermal Networks

Digital twinning architecture (DT)

1. Basic system and energy flow representation

2. Ontology framework, semantic interoperability, and data exchange

3. Data-driven co-simulation and control

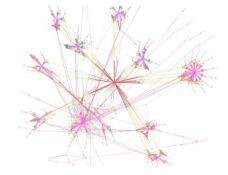


Figure: Comprehensive Brick Schema of a Building

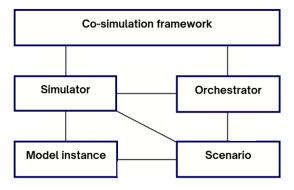


Figure: Component schema of a general cosimulation framework

Digital Twin

with

Ontology

DT-driven Interoperability validations

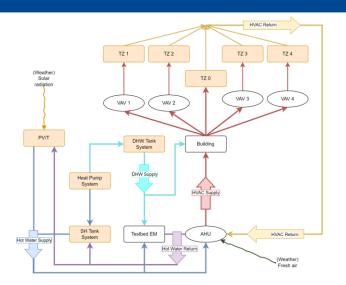


Figure: Energy flow diagrams of heat pump-FTX heating network

2. Implementation of the ontology:

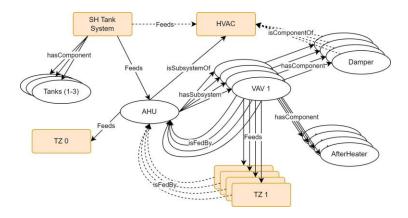


Figure: Example of studied ontology of the heating network

Conventional control

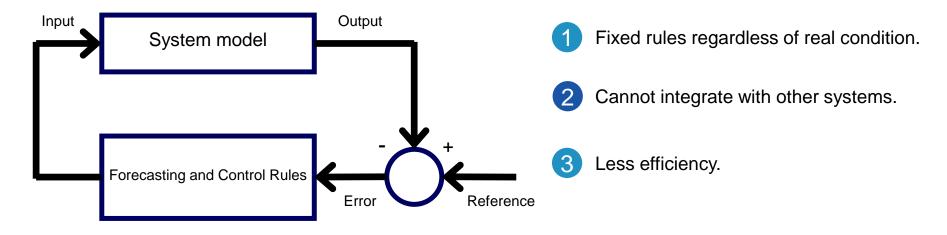


Figure: Architecture of the rule-based control system

Potentials of integrating Reinforcement learning (RL)

Heating equipment (heat pump, district heating)

Figure: A generic illustration of a BES, and the associated measurement and control system.

RL in single buildings

- Real buildings generate data too slowly for traditional RL
- With simulated data RL learns the simulation model
- Hard to trust RL to explore strategies in operation

RL in building clusters

- Use data from many buildings – but innovative methods needed to learn from buildings with different characteristics.
- Multi-agent learning

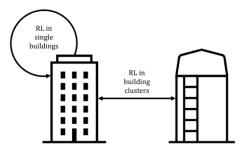


Figure: RL in building clusters concerns the transfer of information between buildings

David Weinberg, Qian Wang, Thomas Ohlson Timoudas, Carlo Fischione, A Review of Reinforcement Learning for Controlling Building Energy Systems From a Computer Science Perspective, Sustainable Cities and Society, Volume 89, 2023, 104351, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2022.104351.

Next step research

Imitation learning along with systematic empirical studies of pre-training

Combine transfer learning with other learning methods (e.g., RL)

Theoretical analysis of the problems encountered in thermal storage integrated control algorithm

Development of interoperability and co-simulations

Combine control algorithm with coupled network optimizations

Testing, validation and demonstrations in various LiL environments with thermal storage solutions

> Engineering implementation and validations

Thank you!