5B & energimyndich
FKTHY Energimyndigheten

vvvvvvv

Bt TeRrRMO

Hybrid control for next generation of heating and
cooling networks

Qian Wang

:Department of Civil and Architectural Engineering
KTH Royal Institute of Technology

%ﬁ + J 1 -

2023-12-05 1



P

FKTHS
G, v ¥
Yt

Our Team

Yangzhe Chen

PhD student

Mustapha Habib

Postdoc researcher

In partnership with
K HYPERGRYD

@Energimyndighefen
TerRMO

European
Union

Théo Parédes

Research engineer

Thomas Ohlson Timoudas

Researcher

HYPERGRYD PLATFORM

R %
r'l/vr \
e/

SIMULATION

uuuuuuuuuuuuuu

2023-12-05



(& & erersimma
§KTHY Energimyndigheten
e Background

Other
Transitions of EU district 6%
0

* K %
* *
*

* 4 Kk

Residential

heating/cooling network

European

Commission Transport 22%

.|

(EU FitFor 55 packages)
26% Non-residential
8%
- District heating/cooling transition towards 4th-6th generation; Building construction industry
” . ” . . 0,

+ EPBD recast, "smart readiness” for buildings; Other industry 6%
* The increasing needs of integrating renewables in combination 3206

with storage toward releasing the power grid pressure;
Figure: Share of buildings and construction in global final

+ Traditional control methods face challenges when energy networks energy consumption and by end use, Worldwide
become increasingly complex and coupled.
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e Vision of the project

General (not case-by-case) thermal-electric load prediction

UndefS(tjand Accurately understand/predict load flexibility
Loa

Technical and semantic interoperability
Integrate distributed energy sources with existing district heating
Advanced (TES, RES...)

Control

Smart control strategy
Virtual-to-Physical

Digital A representational model with bi-directional flow
Twin

@Energimyndigheten

Data-driven
approach
co-developed
with

stakeholders
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e Selected pilot

European
Union

SONNEPLATZ
Location: GroRschdnau, Austria

‘ LiL Type: Biomass-based local heating
;_ L‘ M’ i networks with RES integrated

4 L o

‘,hn.v‘}‘hﬂ#& Nl WINTTH ey il "m}"-’ senrf ~ha |

Uy

SAEE i

Figure: District Heating network real-time data monitoring

Figure: The testbed in Sonneplatz, Austria
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w2 Load flexibility using machine learning (I) T
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Figure: The logic of short-term prediction model
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Figure: Predicted heating load for the 24-hour period

Ohlson Timoudas, T., Ding, Y., & Wang, Q. (2022). A novel machine learning approach to predict short- term energy load for future low-temperature district heating. CLIMA 2022 Conference.
https://doi.org/10.34641/clima.2022.319
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ANN + Clustering:

deal with varying quality of measurements

P o
M }\‘/{\W‘//] L @ 07 ~+— Measurement
' . E 0.6 —¥— MLP model
=
LA e — @ zos
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exploration clustering
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8035 —— Measurement
N ] l 0 L e N S =3 P mose
2
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©
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Figure: Prediction performance for a school dataset (a) in winter
(b) in summer
Figure: Data transfer and analysis flowchart

Mustapha Habib, Thomas Ohlson Timoudas, Yiyu Ding, Natasa Nord, Shugin Chen, and Qian Wang. A hybrid machine learning approach for the load prediction in the sustainable transition of
district heating networks. Sustainable Cities and Society, page 104892, 2023. ISSN 2210-6707. doi: https://doi.org/10.1016/j.scs.2023.104892.
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(Work in progress)

Expand the training dataset:

enable model with more generalization

School building Nursing home

|

=L
w‘xﬂﬁ“ JLW by Jlll W.W,a}w' M ’ w "

Figure: Part of the training load data

Office
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{2} Load flexibility using machine learning (III?E”“Q"“”"""Q”“‘*"

2 Validations

Parallel validation: if the model is robust
enough to predict the load for the same building
but different years.

Vertical validation: if the model is generalized
enough when predicting load of untrained
buildings.

Trained Untraine
building d
| buiiding |
Training : , Vertical
| " ' validation
1
L2020 .. I
——————————————— 1 1
1 I| 1
quall'el | 2021 :: :
validaton [ !
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(Ongoing)

Paralle] validation MAE :0.597083

Vertical validation MAE: 1.936568
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Figure: Prediction results on a school building Figure: Prediction results on a office building

Example results: rather good agreements are reached so far of the developed ML models
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) Flexibility analysis (individual building) & g

District heating
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“* Coupled network optimization and co-simulation (Aggregated)

P —— B Thermal network simulation

. Steady state thermal network
simulation

. Quasi-dynamic Thermal Network
Simulation

. Coupled electricity & thermal
network simulation (integrate HP
with storage)

Electricity Networks Thermal Networks

2023-12-05 11
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= Digital twinning architecture (DT)

1. Basic system and energy flow ? ;
representation WU\ NS X

Digital Twin

2 Ontology framework, semantic Figure: Comprehensive Brick Schema of a Building

W|th interoperability, and data exchange Co-simulation framework

Ontology

Simulator Orchestrator

3. Data-driven co-simulation and Model instance Scenario
control

Figure: Component schema of a general co-
simulation framework

2023-12-05 12
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‘¥ DT-driven Interoperability validations & ewimniot

1. System and energy flow representation: 2. Implementation of the ontology:

HVAC Return
SH Tank
System [ 77 i i RVES AR
TZ1 TZ2 TZ3 TZ4 8 Y isComponentOf. _
(Weather) ? if
Solar 120 hasComponent
radigtion Damper
! Feeds
| CwidCwid | Qe DCmd (—
L
oy DHW Tank hasComponent
y System Feeds
‘
120 \\\ﬁ
N
Heat Pump DHW Supety N AfterHeater
System

J HVAC Supplyl

—f— SHmmk Testbad EM
" System

tor Supph) “
2 Hot Water Returr]
N/ feather)
Fresh air

HVAC Relurn

Figure: Example of studied ontology of the heating network

(We

Figure: Energy flow diagrams of heat pump-FTX heating network
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System model

Forecasting and Control Rules

Figure: Architecture of the rule-based control system

Reference

@Energimyndigheten

o Fixed rules regardless of real condition.

9 Cannot integrate with other systems.

e Less efficiency.

2023-12-05
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= learning (RL)

Ventilation

e Thermal (radiators, floor
Heating equipment storage ! heating)
(heat pump, district

heating) -

N J

Domestic
hot water

Emission system

Figure: A generic illustration of a BES, and the associated

measurement and control system.

% Potentials of integrating Reinforcement € tnergimyndigheren

RL in single buildings RL in building clusters
Real buildings generate data . Use data from many

too slowly for traditional RL buildings — but innovative
With simulated data RL methods needed to learn
learns the simulation model from buildings with different
Hard to trust RL to explore characteristics.

strategies in operation . Multi-agent learning

RLin
single

buildings

RLin
building
clusters

11111

Figure: RL in building clusters concerns the
transfer of information between buildings

David Weinberg, Qian Wang, Thomas Ohlson Timoudas, Carlo Fischione, A Review of Reinforcement Learning for Controlling Building Energy Systems From a Computer Science Perspective,
Sustainable Cities and Society, Volume 89, 2023, 104351, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2022.104351.
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Imitation learning along with systematic empirical

¥ Next step research

studies of pre-training

Combine transfer learning with other learning

methods (e.g., RL)

Theoretical analysis of the problems encountered
in thermal storage integrated control algorithm

Theoretical
development

@Energimyndighefen
- European
Union

EBC &)

b

IEA EBC

Development of interoperability and co-simulations

Combine control algorithm with coupled network
optimizations

Testing, validation and demonstrations in various
LiL environments with thermal storage solutions

Engineering
implementation
and validations

2023-12-05
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Thank you!
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