

Digitalization and IoT technologies for Heat Pump systems

IEA HPT Annex 56

Presented by Davide Rolando, KTH

IEA HPT Annex 56 Digitalization and IoT for Heat Pumps

IEA HPT Annex 56

Digitalization and IoT for Heat Pumps

Austria	AIT					
	TU Wien					
	Austrian Academy of Sciences					
Denmark	Danish Technological Institute (DTI)					
	Energy Machines™					
	Technical University of Denmark (DTU)					
France	EDF					
Germany	Fraunhofer ISE					
	RWTH Aachen					
Norway	SINTEF Community					
	SINTEF Energy					
Sweden	ктн ВІ					
	RISE SE					
Switzerland	HSLU					

https://heatpumpingtechnologies.org/annex56

IEA HPT Annex 56

Digitalization and IoT for Heat Pumps

Evolution of IoT

https://heatpumpingtechnologies.org/annex56

State of the art

Internet of Things: "Machine-to-machine communications and person-to-computer communications will be extended to things, from everyday household objects to sensors monitoring the movement of the Golden Gate Bridge or detecting earth tremors. Everything from tyres to toothbrushes will fall within communications range, heralding the dawn of a new era, one in which today's internet of data and people gives way to tomorrow's Internet of Things." (ITU, 2005)

(Statista, 2019)

Data analysis

Machine learning

State of the art

(Blanz, 2012)

Industrial Ethernet fieldbuses: Modbus, KNX, BACnet, ...

Session layer protocols: AMQP, MQTT, ...

. . .

IoT use cases

44 use cases collected

- Products and services (19) ٠
- Research projects (25) ٠

Categories

- Heat pump operation optimization ٠
- Predictive maintenance ٠
- Flexibility provision ٠
- Heat pump operation commissioning ٠
- Heat as a service ٠

Factsheets available on the IoT Annex website

studies to develop and test the digital twins. These systems have rated heating capacities of approximately 4 MW and

IoT use case example: ZEB Lab

	Digitalization
	and IoT for
56	Heat Pumps
	•

www.heatpumpingtechnologies.org/annex56/

BAC in Action: Connected heat pumps in the ZEB Laboratory building

Figure 1: The project is the first to use data processing pipelines from the new ZEB Laboratory to develop applications.

https://zeblab.no/

Data infrastructure

- Time series database (InfluxDB)
- BACnet automation controllers
- Sub-system protocols: Modbus and Mbus
- Weather forecast input
- ...

Manufacturer survey (Austria)

About 50 questions to gather and evaluate the general sentiment on the importance of IoT

A total of 16 companies participated in the survey

Challenges

- Data security
- Data protection guidelines
- Increase of system complexity
- Availability of qualified personnel

Motivation to introduce IoT products in heat pump systems

Expert interviews (Sweden)

Expert interviews involving leading heat pump manufacturers, IoT companies, associations, and consultants.

Opportunities:

- Innovative business models
- Predictive maintenance

Challenges

- Lack of guidelines
- Need for demonstrators

Motivation to introduce IoT products in heat pump systems

- Reduce operating cost
- Service and repair improvement

IEA HPT Annex 56: Final reports

Digitalization and IoT for Heat Pumps

Task 1 Report: State of the Art

Task 2 Report: Interfaces and platforms

Task 3 Report: Data analysis

Task 4 Report: Business Models

Technology wiea	y Collaborat	on Progran	nme			
	Technolog by lea					
ninologies (nr. 1)	ologies (HPT)	Techr _{by lea}	nology Collab	oration	Programme	
	on Programme on Heat Pumping Technol	gramme on Heat Pumping Technologies (HPT)		rogramme on Heat Pumping Technologies (HPT)	Digitalization and IoT for Heat Pumps Task 4: Business Models Task Report	

Data-driven soft sensors

Modern heat pump systems are equipped with sensors that help gathering a significant amount of operational data.

However:

Many heat pumps installed over the past decades lack key measurement points.

Issue:

- incomplete measurements
- difficult/impossible to track system
 performance

DN DEBATT

DN Debatt. "Till stora kostnader samlas data in som aldrig används"

"At a huge cost, data is collected but never used"

https://www.dn.se/debatt/till-storakostnader-samlas-data-in-som-aldriganvands/ (2021-05-02)

Data-driven soft sensors: motivation

Modern heat pump systems are equipped with sensors that help gathering a significant amount of operational data.

However:

Many heat pumps installed over the past decades lack key measurement points.

Issue:

- incomplete measurements
- difficult/impossible to track system performance

Heat pump monitoring systems

Cost share of faults reported to HP manufacturers

Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, KTH Royal Institute of Technology, Brinellvägen 68, SE-100 44 Stockholm, Sweden

Data-driven soft sensors targeting heat pump systems: results

PhD Project: Data-Driven Lab for Heat Pump Systems

PhD Candidate: Yang Song (yson@kth.se)

Main Supervisor: Hatef Madani (hatef.madani@energy.kth.se)

<u>Co-supervisor</u>: Davide Rolando (davide.rolando@energy.kth.se)

Thank you!

https://heatpumpingtechnologies.org/annex56

